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Abstract-Poor agreement between experimental data and theoretical expressions for acoustic dis- 
persion in a rarefied gas which are obtained on the basis of the Burnett and super-Burnett solutions of 
the Boltzmann equation is shown in the present paper; the classical theory based on the Navier-Stokes 
hydrodynamics brings more successful results. The above-mentioned appears to be valid also when 
considering atemperaturejump and slip. Contradictions between the Euler equations and the molecu- 
lar-kinetic theory are also revealed while considering the conformability of these equations to the 
rarefied gas. The generalization of the Euler equations is fulfilled in the paper by introducing a 

parameter of non-ideal continuity. 

R&urn6 -Cet article montre le mauvais accord qui existe entre les donnees experimentales et les expres- 
sions thtoriques obtenues pour la dispersion acoustique dans les gaz rarefies d’aprts les solutions 
Burnett et super-Burnett de l’equation de Boltzmann; la thtorie classique basr5e sur l’hydrodynamique 
de Navier-Stokes apporte des rtsultats plus heureux. La conclusion ci-dessus semble egalement 
Ctre valable quand on considere un saut de temperature et un glissement. Des contradictions apparais- 
sent egalement entre les equations d’Euler et la theorie cinetique moleculaire quand on applique ces 
equations aux gaz rarefies. La gtneralisation des equations d’Euler est faite dans cet article en intro- 

duisant un paramttre exprimant que la continuite n’est pas parfaite. 

Zusammenfassung-Fiir die akustische Dispersion in verdiinnten Gasen wird die geringe Uber- 
einstimmung zwischen den experimentellen und theoretischen Werten, wie sie sich auf Grund der 
Burnett- und Super-Burnett-Losung der Boltzmanngleichung ergeben, aufgezeigt. Die klassischen 
Navier-Stokessche Theorie vermittelt bessere Ergebnisse. Das scheint such fiir Temperaturspriinge 
zu gelten. Widerspriiche zwischen den Eulerschen Gleichungen und der molekular-kinetischen 
Theorie ergaben sich bei dem Versuch, die Gleichungen auf die verdiinnten Gase anzuwenden. Die 
Verallgemeinerung der Eulerschen Gleichungen wurde hier dadurch erreicht, dass man einen Para- 

meter nicht-idealer Kontinuitat einfiihrte. 

AHHOT~~H~I-B crarbe nonanbmaercsr, YTO TeopeTcllsecKxe nMpalrteHaR x:xrr a~YcTM~ecKoti 
AMcnepcMII B pa3peHtemoiv ra36, IIOJly'IeHHLIe Ha OCHOBe 6apHeTOBCKPIX II cynep6apae- 
TOBCKMX pelIIeHIl$i YpaBHeHIIH ~OJIbyMElHa, IIJIOXO COIYEtCyIOTCH C AaHHbIMIi 3KCIEpZIMeHTOB: 

6oxee ygaqubre pe3ynbTaTbI AaBT KJIaccmecKaH Teopm, OCHOBaHHaR Ha rIIJJpOHkIHaMIfKe 
Hasbe-CTOKCa. 3TO OKa3bIBaeTCFI CIIpaBeAJIMBIJM II AJIH CJIyqaJS paCCMOTpeHHH HBJIeHIrir 
TeMIIepElTJ’pIIOI’O CKa9Ka 5% CKOJlb1KeH&iH. 

rip11 paCCMOTpE!HIlll J’paBHE!H&iii %hIepFi IIpkiMeHHTeZbHO K pa3pWKeHHOMy lY%3). TBKX(P 

BCKPbIBBEOTCFI HX IIpOTI4BOpWIIW C MOJleKyn~IpHO-K~IHeTHsecKoP TeOpW?li. B pa6ore 
IIpOBe~CHO o606menne J’paBHFIHMii 3ti;Iepa IIyT&M BBeJJt?HIlrt napaweTpa HeHAeanbHofi 

CIIJIOIIIHOCTII. 

NOMENCLATURE 

pressure; 
circular frequency ; 
dynamic viscosity ; 
wall temperature ; 
gas temperature; 
temperature jump coefficient; 

h, mean free path of molecules; 

“6 measure of affinity with molecules of a solid 
body ; 

W, flow velocity ; 
U, slip velocity near a wall ; 
R, gas constant; 

5, slip coefficient ; 
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M, molecular weight of a gas; Mach local 
number ; 

24, u, w, comuonents of molecular velocitv: 
function of molecular distribution; 1 ’ 
shortest distance between rectilinear tra- 
jectories; 
relative velocity of colliding molecules ; 
angle ; 

=du.dv.dw; 
density ; 
ratio of specific heat; 
distance along radius polar system refer- 
distance along axis ) ence ; 
angle ; 
parameter of non-ideal continuity. 

1 

PRESENT various problems of heat and mass 
transfer in rarefied gases represent a whole field of 
knowledge. There are scores of works in this 
direction. Designers of various reactive machines, 
engineers and scientists working on industrial 
processes involving low gas densities come across 
various problems on aerodynamics and heat 
and mass transfer theory in rarefied gases. 
Improving the construction of powerful gas 
pumps brings out the necessity for a profound 
understanding of the phenomena in rarefied 
gases. However, in spite of the intensive develop- 
ment of the molecular-kinetic theory the prob- 
lems mentioned are still being solved by methods 
which raise serious doubts because of the 
contradictions they give. Thus, it follows that it 
is necessary to look through all the principal 
concepts which are the basis of the aerodynamic 
equations and laws of heat and mass transfer 
in rarefied gases. 

Thus, first it is necessary to search for some 
methods of experimental examination of the 
problems mentioned. 

2 

A very direct and simple method for such an 
examination is based on the theory of propaga- 
tion of acoustic waves in rarefied gases. Indeed, 
until the length of an acoustic wave exceeds by 
many times the average length of the free path 
of molecules, the acoustic wave will propagate 
normally provided that there are no substance 

transformations in the gas. But if the length 
of an acoustic wave is comparable with the aver- 
age length of the free path of molecules, then in 
this case the phenomenon of acoustic dispersion 
begins. The laws of this dispersion may be 
predicted starting from various forms of equa- 
tions of aerodynamics of a rarefied gas. Thus, 
there is a possibility of direct examination 
of the principal states of the equations indicated. 

As is known the momentum equations as 
well as that of energy transfer are deduced in 
the modern molecular-kinetic theory on the 
basis of the solutions of the so-called Boltzmann 
integro-differential equation. The solution of the 
Boltzmann equation in its first approximation. 
i.e. when the velocity and temperature gradients 
effects on the average length of the free path of 
molecules can be neglected, brings to the gas 
motionequations of the Navier-Stokes form. The 
second approximation obtained by Burnett using 
the Enskog-Chapman method introduces into 
the system of momentum and heat flow equa- 
tions essentially new terms which alter dispersion 
laws of acoustic waves. In this case, to some 
extent, the variation of velocity and tempera- 
ture gradients on the average length of the free 
path of molecules has already been taken into 
account. The solution of the Boltzmann equa- 
tion in its third approximation exists already. It 
is known as the super-Burnett solution. The 
solution gives new corrections for the equations 
of momentum and heat flow. Consequently. it 
must give a more precise expression for acoustic 
disperson in rarefied gases. 

The dimensionless value r = (p/oq) is used as 
the independent variable for the experimental 
examination of theoretical formulae of acoustic 
dispersion which are deduced from different 
aerodynamic equations of rarefied gases. 

It is easy to show that this value is propor- 
tional to the ratio of the acoustic wave length to 
the average length of the free path of molecules. 
Consequently, it is convenient for the estimation 
of the emergence of acoustic dispersion. 

The classical theory based on the Navier- 
Stokes equations gives as a result the known 
formulae of the Stokes-Kirchoff acoustic dis- 
persion. For values of r exceeding 10, i.e. when 
we deal with relatively low acoustic frequencies 
and high pressures, the relative value of the 
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sound absorption coefficient is not great. There- 
fore, the velocity of its propagation remains 
practically a constant value. Consequently, 
there is no acoustic dispersion. 

The relative absorption of sound increases 
at decrease of r; the velocity of its propagation 
becomes the function of r and the Stokes- 
Kirchoff acoustic dispersion begins. The absorp- 
tion is maximum if the value of r is equal to 
unity. The absorption is somewhat lower with 
further decrease of this value. 

The corresponding calculations based on the 
Burnett and super-Burnett momentum equations 
give qualitatively the same results. At great 
values of r the coefficient of sound absorption 
as the function of r coincides with the corres- 
ponding functions obtained from the Burnett 
and super-Burnett equations. However, the 
divergence between the corresponding functions 
begins to increase with decrease of r. The highest 
divergence is at the value of r = 1. This diver- 
gence is so considerable that it can be easily 
found experimentally. In 1953 Greenspan and 
Thompson carried out a detailed experimental 
investigation of the velocity and absorption 
of ultrasound waves in rarefied gases. The 
results of these highly precise experiments 
revealed that the classical theory based on the 
Navier-Stokes hydrodynamics gives correct 
results in a considerably wider range of r than 
the theories based on the Burnett and super- 
Burnett equations. Moreover, the super-Burnett 
equations obtained from the more precise 
solutions of the Boltzmann equation gave the 
worst results. 

3 

However, the phenomenon of acoustic dis- 
persion is not the only method of verification 
of concepts of aerodynamics of rarefied gases. 

At Moscow State University, in the Depart- 
ment of Molecular Physics, the phenomena of 
slip of the gas flow and the temperature jump 
between a wall and a gas were investigated. 

The theory of the temperature jump and flow 
slip near a wall, as is known, is based on the 
solution of the Boltzmann equation in its first 
approximation and was verified by Kundt, 
Warburg, Smolukhovskii, Lazarev, Millikan, 
Timiryazev and others. 

If we designate the corresponding tempera- 
ture of a wall and a gas as T,, and T,, then the 
heat transfer between a wall and a gas is regulated 
by the formula: 

k 
db 
dn = TtL. .- Tg 

moreover, the temperature jump coefficient 
according to molecular-kinetic calculations 
equal to: 

k_l5 2-f 
4xL f * 

k 
is 

Here 1: is the average length of the free path of 
molecules and f is the measure of affinity with 
those of a solid body. 

The analogical formula also exists for the slip 
of a rarefied gas flow near a wall. Let us desig- 
nate by W the velocity of the flow; by Li the 
slip velocity near a wall, then we get: 

5 
dW _=- 
dn ’ 

and moreover, the slip coefficient 5 according 
to the molecular-kinetic calculations, has the 
form : 

Z-f’7 

5 = -7 iJ 

‘aRT A, 

J! ! xvi ==P’ 

R is the gas constant, M is the molecular weight 
of the gas. Now from the above-mentioned rela- 
tions for the slip constant A, and for the tempera- 
ture jump coefficient k, we can get the following 
important formula: 

8 
A, = ,5kp. 

As we have noted earlier all these formulae are 
valid only at extremely low values of both 
temperature gradient and velocity gradient 
along the average length of the free path of 
molecules. If the given gradients are high, then 
we should search after correct terms for the 
given formulae. It is quite possible to find these 
correct terms theoretically, but they can be 
determined ex~rimentally as well. 

Cribkova and Shtemenko developed a very 
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interesting method of simultaneous measure- 
ments of the temperature jump and slip under 
conditions of such flows of rarefied gas where it 
was quite possible to have considerable gradients 
of tem~rature and velocities along the average 
length of the free path of molecules. The method 
is based on longitudinal flow along a thin heated 
thread, i.e. the flow of a rarefied gas in a cylin- 
drical tube in which the diameter of an internal 
continuous cylinder was very small in comparison 
with the external one. Gribkova developed the 
theory of such an apparatus which was used in 
the solution of this problem. 

The results of the investigations carried out 
appeared to be quite unexpected. In spite of the 
fact that both the gradients of temperature and 
velocities along the average length of the free 
path of molecules were considerable, results of 
the application of the classical theory to the 
temperature jump and slip appeared to be 
correct. 

After a thorough analysis of the results of 
their experiments the authors of these investiga- 
tions came to the following conclusion. Ap- 
parently, at motion of a rarefied gas near the 
surface of a solid in cases when the range of 
temperature change along the average length of 
the free path of molecules is l-IO%, and the 
velocity of the mass motion variation is 50-60 
m/s near the surface of a body, the law of dis- 
tribution of heat velocities corresponding to the 
solution of the Boltzmann equation (in the first 
approximation) occurs. 

(1) The described disagreement of the molecu- 
lar-kinetic theory with the observed facts makes 
us think seriously of the reasons which cause 
these contradictions. 

If we assume that the solution methods of the 
Boltzmann equation, which were worked out by 
mathematicians, are quite correct, then we should 
find an explanation of the described contra- 
dictions in imperfections of this equation. 

As is known, two operations of the function 
of molecular distribution F, according to heat 
velocities, are equated with each other in the 
Boltzmann equation. 

The variation of the function F per unit in 
time, co-ordinates and velocities is calculated 

with the help of the first operation. It may be 
written in the following way: 

and moreover, we take into consideration the 
equalities : 

au au ~~ - 
at - 

x; ‘& = y; !J+: = z. 

The variation of the same function per time 
unit due to collisions of molecules is calculated 
with the help of the second operation. 

If components of the molecular velocity of the 
first type molecules are designated by u,, ur, w1 
and components of the second type molecules 
are designated by z+, u2, w, till the moment of 
their collision among themselves, then the 
measure of probability of their approach may be 
taken as equal to F,F,. The subscripts denote in 
this expression from which components of 
heat velocities we should take the function of 
distribution. 

After collision, the components of velocities 
of molecules of both types acquire the following 
values : 

tu;, $7 w:); (4, v;, $1. 

The product of F,; Fi will serve as a measure of 
probability of their repulsion. 

Thus, each collision of one molecular group 
with that of another will be characterized by a 
difference : 

F;F; - F,F, = SF,F,. 

If we summarize all these differences along the 
whole phase volume, we shall get the variation 
of the function F per time unit which is due to 
collision of molecules, 

DF 
-= . . 
Dt s . . JGF,F,Vdbdw,dp? (2) 

Here the product Vdbdqdp, denotes an element 
of a phase space; V denotes the relative velocity 
of colliding molecules, b is the shortest distance 



192 A. S. PREDVODITELEV 

between rectilinear trajectories of molecules; 
y is the angle between the plane of the trajectories 
of the relative motion of the first type molecule 
and a certain constant plane passing through V; 
finally, dw, denotes the product du, dv, dw. 

Consider whether these two operations are 
always equal to each other. The first operation 
by its nature can give continuous values from the 
co-ordinates of a phase space. As for the second 
operation it is not evident. We are inclined to 
suppose that the second operation must bring 
discontinuous values because the variation 
6F,F, is not always an infinitely small value. It 
means that we cannot equate in the main the 
operations with each other. As is known, both 
operations are equated without any proof that 
the variation W,F, is the continuous co-ordinate 
function of a phase space. In our opinion such 
equalization will be more valid, the higher the 
density of a gas. The validity of the given equali- 
zation becomes less lawful as a gas is rarefied. 
Therefore, the solutions of the Boltzmann equa- 
tion for rarefied gas must give unsatisfactory 
results. Probably the reason lies in the fact that 
the phenomena of acoustic dispersion in rarefied 
gases and phenomena of the temperature jump 
and slip of the gas flow near a wall cannot be 
restricted by the solutions of the Boltzmann 
equation according to the Enskog-Chapman 
method. 

(2) However, recently another possible point 
of view has been discussed in literature. We mean 
the works by Truesdell. 

In one of his works he says the following: 
“Up to now there is no solution of the 

Boltzmann equation. It is true that there is a 
great number of so-called solutions. But the 
Maxwell theory was a paradise for conjectures 
and dogmatism, and it was a desert for precise 
mathematics. The methods named in this theory 
as integration are without any exception purely 
formal. Their convergence has never been proved 
but moreover there are no indications that classi- 
cal methods of solution have significance for 
this equation. The above mentioned refers in 
equal degree to investigations of physicists 
as well as to the outstanding work by the great 
mathematician Gilbert.” And further: “All 
the classical investigations are extremely over- 
loaded with calculations. A great number of 

investigations are devoted to the study of the 
Boltzmann equation and to attempts to solve it 
with the help of special series. One always 
speaks of approximation and the order of 
magnitude, etc. However, complexity of the 
analysis makes difficult the understanding of the 
principal course of arguments.” 

In his work Truesdell goes further as he has 
doubts about the concept of the gas-kinetic 
theory and speaks of a modern crisis in the 
kinetic theory of gases. In his work, under such a 
title, he analyses the already formed situation in 
the kinetic theory of gases and shows that the 
problem of convergence of successive approxi- 
mations is not trivial at all. In one concrete 
example he illustrates that there might exist 
such cases where all the approximations 
appeared to be worse than the first one, which is 
the asymptotic solution. It is quite possible 
that in a strict statement of the problem this 
asymptotic solution will be closer to the Navier- 
Stokes equations than all the existing approxi- 
mate solutions of the Boltzmann equation. Now 
it is very difficult to say which point of view 
mentioned above is correct. It is clear that 
modern techniques are necessary to begin to 
solve this problem which is of great impor- 
tance and deserves the most serious attention on 
the part of physicists and mathematicians. 

(1) The well-known ilperfection of our con- 
cepts in the kinetic theory may be revealed not 
only from attempts to obtain exact equations of 
momentum and heat flow for a viscous rarefied 
medium, it is also possible to show that the 
Euler equations do not agree well with molecular- 
kinetic concepts of media properties. We shall 
try to explain this in a concrete example. 

Let us consider a rectilinear vortex cord of an 
infinite length in an ideal medium. In this case 
the rotor of a velocity of a partial motion beyond 
the vortex cord will be equal to zero. Conse- 
quently, motion of a medium beyond the vortex 
cord will be potential. Therefore, according to 
the Euler equation for the steady iso-entropic 
motion of an ideal continuous medium, we can 
write such an equality for a velocity field beyond 
the vortex cord : 
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WV 
*+$ (& y-l = const. (3) 

0 

Here the subscript “0” denotes the values of 
quantities taken on the surface of the vortex 
cord. The equation obtained is valid provided 
that the medium is continuous. Only in this case 
are all the mathematical operations which have 
to be fulfilled while deriving the given equations 
quite lawful. But if the medium is discrete, 
there is no reason to consider that these opera- 
tions are lawful. In this case, following the 
Klein example, we must use finite difference and 
derive the equation of motion from purely 
physical concepts independently of the Euler 
equations. 

(2) In discrete medium we must take as the 
hydrodynamic element of the volume such a 
volume as would contain rather a great number 
of molecules. Only in this case can we expect that 
the averaged velocities of the regulated motion can 
change continuously from one point to another. 

Let us cut out a ring with a thickness equal 
to Al and width Ar in a region beyond the vortex 
cord. Further, let us cut a curvilinear parallele- 
piped out of this ring by two planes and let the 
angle between these planes be equal to Atl. Then, 
the volume of this parallelepiped can be written 
in such a form: 

AO = fAt9AlAr. 

Here i is the average arithmetic value of two 
radii of the ring. We must choose this hydro- 
dynamic volume thus that it will catch rather a 
great number of molecules. 

Let us designate the average angular velocity 
of the curvilinear parallelepiped volume as 8. 
Then the centripetal force effecting this hydrody- 
namic volume will be equal to: 

p [(T; - r;)/2]ABAh2. 

where /s is the average density. On the other 
hand the pressure on the average surface of a 
curvilinear parallelepiped will be equal to: 

(p2 - pr) ?AdBAl. 

Comparing these two forces with each other we 
shall have : 

r2 - rf 
-+ Ai9A&i2 = _ PC JAeAl. 

/s 
(4) 

If the phenomenon occurs in an iso-entropical 
way, such an equation can be easily obtained 
from the Poisson equation : 

p1 - p2 = --L &-l - p;-l)A 

(Y- 1) 

PO Y 
=z (y- 1) 

.~ #&q-l - /p). 

Now equation (4) can be transformed in the 
following way : 

yi_- r2 -1 &j2 = ._. 

2 “,i &fj (P:-' - P~-'h W 

In order to obtain from this equation the 
relation (3) which follows from the Euler equa- 
tion it is necessary to exclude &j2. This elimination 
reserves all the details which result from the 
necessity of a transition from the discrete 
medium to the continuous one. Indeed, we 
suppose that a motion velocity of internal and 
external points of a ring is determined corres- 
pondingly by relations : 

Wore _ Wore ~_ 
r 1 

wlrl = WI,; - ~-- = w2rz = W,,. (5) 
r2 

Each of these relations is the effect of the 
potentiality of the flow. If we assume this, then 
the average angular velocity w will be equal to : 

Wore 1 1 Wore J2 c=___ -+_ 

2 i 1 ri rt = -+;;- * 

Or substituting the arithmetical mean of 
r = (ri + r2)/2 for the geometrical one of d(r1r2) 
we shall get: 

fi = -Yz! 

r1r2 

Now we may reduce the equality (4a) to: 

As we see, the obtained equality coincides 
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essentially with the equality (3) which was found It is convenient to substitute the value ,L12 for the 
from the Euler equation. following: 

However, we made an unfounded assumption 
that external and internal surfaces of a physically 
small volume have various angular velocities 
throughout, but for determination of continu- 
ously changing average velocities of a regulated 
motion we must assign a specific physically small 
volume attributing to it some angular velocity 
and a corresponding radius-vector. This choice 
must be accomplished in such a way that the 
equality will be always valid: 

@” = 1 -- TS. 

The quantity Q is the measure of media con- 
tinuity with respect to the given hydrodynamic 
motion. Therefore, we may call this measure 
a parameter of non-ideal continuity. 

By extrapolation of the obtained equation up 
to the heat velocities it is possible to show that 
the value of q3 is equal to: 

W,r, 
ri- 

= w,r,f. 

Here ri determines the location of the physically 
small volume. It is seen from this equality that 
we can change arbitrarily the angle velocity wi 
and the radius-vector ri. However, from the 
physical considerations it is clear that the angle 
velocity of the physically small volume must be 
constant (w). Consequently, only the radius- 
vector rj must be chosen in accordance with 
the physically small volume. It means that the 
following equalities must be valid for the 
motion of external and internal surfaces of 
the physically small volume: 

2L 
73 = j D hf. 

Here, L is the average length of the free path of 
molecules; D is geometrical sizes of region of 
flow investigated; M is the Mach local number. 

It is impossible to obtain the correction which 
we have found by solving the Boltzmann gas- 
kinetic equation, as the possibilities of this 
equation are restricted, i.e. it solves only the 
problem of transition of a visible motion into 
heat. 

(1) The above-mentio6ned generalization of the 
Euler equations allows one to obtain new 
information on heat transfer phenomena in the 
flow of a rarefied gas. 

Wore Wore 
-~rl 

= cur;; ~ 
r2 

= wr;. 

Hence, it follows: 

If we introduce the value of the angular velocity 
w into the equality (4a) we shall obtain: 

This equation differs from equation (3). In order 
to get it with the help of mathematical trans- 
formations which require continuity of a 
medium, we must improve the Euler equations 
in a suitable manner. It is not difficult to per- 
ceive that the improved Euler equation of a 
motion must have such a form as: 

aW Yi + 82 grad -7 = - : grad p. (6) 

As is known, in the problem of gas motion in 
a cylindrical tube we must take into considera- 
tion two equations: 

If we consider the same problem for a flow along 
a tube of non-ideal continuous media, then 
proceeding from the Euler generalized equations, 
we must take into account the following two 
equations : 

Near a wall the first equation can be tran 
formed with the help of the equation of state 
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and relations for the temperature jump and slip, 
i.e. we can use the following formulae: 

i?p dT RATp 
-_. zzz R dr p = pk-.~ . 
ar 

As a result of such a transformation, we shall 
get : 

(1 - Z&W2 RAT _ ~. --.-? 
5 

=--- . 
k (7) 

On the other hand, proceeding from the law of 
conservation of energy, we have: 

Hence : 

PW: 
m--j + p = po. 

Wf = 2R&T. 

Now equation (7) can be rewritten in such a 
form : 

2(1 - 27,)k = 5. 04 

Due to investigations carried out by Gribkova 
and Shtemenko the relation obtained is of great 
interest. Indeed, if the relation t/k remains 
constant for all the viscous molecular flows and 
is equal to S/15, then from equation (7a) it is 
possible to calculate a parameter of non-ideal 
continuity. Its value will be equal to 0.367. On 
the other hand we know the parameter of non- 
ideal continuity in an explicit form. Therefore, 
it can be written: 

2L 
773 = 5 B h4 = 0.367. 

Hence : 

; M = 0*550. 

of sizes of the region of a flow where the tem- 
perature jump and slip occur will be m~mum. 

Thus, the physically small volume for a 
molecular-viscous flow must exceed by approxi- 
mately eight times the volume of a cube whose 
edge is equal to the average length of the free 
path of molecules. This result is of great interest 
from the viewpoint of physics. It shows that it is 
not obligatory to have a great number of 
molecules in one cubic centimetre while dealing 
with continuum consideration of a medium. 
Consequently, the classical equations which 
were derived in a phenomenological way are 
also valid for sufficiently deep rarefication of a 
gaseous medium. 

(2) It is possible to extend the generalization 
of the Euler equations obtained from the 
analysis of turbulence in ideal medium to a 
viscous gas as well. In this case only the equations 
of motion and energy need corrections; the 
continuity equation remains unchanged. 

If we write the Navier-Stokes equation of 
motion in symbols: 

dW 
dt 

=s 

then after taking into account the corrections 
for non-ideal continuity we shall have: 

dW 
-z 

= S -+ Q (fr grad W2 + W div W 

+ [rot W,Wl). 

As is known, in aerodynamics of a viscous liquid 
we write the equation of energy in its general 
form as follows: 

pc, -dt t p div W = E,. 

Taking into consideration the corrections for 
non-ideal continuity the equation can be written 
as follows : 

For the Mach number equal to unity the size of dT . 
the flow region where the jump of temperature pc, --ai + p div W 

and flow slip occur will be equal to 1*82L, i.e. 
about two lengths of the average path of the . 
molecular wandering. Since in this case the Mach 

= Es + pr), W2div W + pv3 W, grad 7 
( 

number is calculated according to the local value The degree of fitness of the equations obtained 
of the velocity of molecules the calculated value for the description of the motion of rarefied gases 
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FIG. I. 

Plot of the values F = o!’ versus r = -‘- 
cl 2?r WI 

x , 0 -experimental data, - -calculated curve according to author’s formulae. 

-;” I I I111111 

0.4 

o-2 

O-I 
.a2 0.4 0.7 ,.o 2.0 4.0 7‘0 IO 20 40 70 100 

r = P/WV = 0. I27 fc/f 

FIG. 2. 

Plot of the values $ = %$ versus r = -e. 
II 9 

0, n ---experimental data, - --calculated curve according to Stokes-Kirchoff, 
- - - - - -calculated curve according to second approximation Burnett, 
--- -calculated curve according to third approximation Burnett. 
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can be obtained while examining the dispersion 
of acoustic waves in an experimental way. It is 
not difficult to obtain formulae of acoustic 
dispersion if we use the conditions of com- 
patibility by Hugonio-Hadamard. As is known, 
the above-mentioned conditions characterize 
the process of formation and propagation of a 
front. They allow one to find without any 
integration (i.e. only by segregation of dis- 
continuity surfaces), the velocity of motion of 
the latter throughout a space. The peculiarity of 
any acoustic front results in the fact that when 
passing through it from the disturbance region 
to that of rest the first and second derivatives 
entering the closed system of momentum 
equations suffer a break of continuity. Not 
dwelling upon the detailed calculations the 
author of this paper succeeded in finding the 
following formulae for the sound absorption 
coefficient in a rarefied gas: 

(0.7r + 0.23)2/r 
a = (r+?Y75)22/(r + 0,575)’ 

The calculations were fulfilled for monatomic 
gases which were investigated by Greenspan and 
Thompson. The above-mentioned dimension- 
less value is designated by r in the given 
formula. 

The Greenspan data on the dispersion of ultra- 
sound waves in xenon and krypton are given 

in Fig. 1. The continuous curve is plotted accord- 
ing to the theoretical formula. 

As is seen, the coincidence of observed and 
predicted values of the absorption coefficient of 
acoustic waves may be considered rather good. 

It is interesting to compare this result with 
that of the Navier-Stokes, Burnett and super- 
Burnett equations. 

The Greenspan data obtained from experi- 
ments in krypton and xenon and calculations 
according to theoretical formulae are given in 
Fig. 2. The continuous curve corresponds to the 
Stokes-Kirchoff equations. The short dashed 
curve corresponds to the Burnett equations and 
the long dashed curve corresponds to the super- 
Burnett equations. 

Hence, the formulae of acoustic dispersion 
based on the Navier-Stokes equations describe 
the experiment better than the formulae based 
on the Burnett and super-Burnett equations. 

As for our formula, it coincides completely 
with the Stokes-Kirchoff formula over the whole 
range. This formula gives a better agreement with 
experimental data only at values approximately 
equal to unity. 

Thus, the analysis of this problem carried out 
in a different manner to the Truesdell analysis 
leads to just the same conclusion. Undoubtedly, 
we deal with a crisis in the molecular-kinetic 
theory when we relate equations of aerody- 
namics and heat theory for rarefied gases. 


